Pages

  • Home
  • Blog Archive
  • Blog Submission
  • About Us
  • Contact Us

Friday 7 September 2018

Mechatronics (Part-X)- Automation In Manufacturing And Health Industries

Image for representative purpose only.

Know About The Role Of Automation In Various Sectors Like Manufacturing And Health Industries


Here we continue with the tenth part of our blog on mechatronics. Those who have missed our ninth blog can read it from Here. It will help to connect with the tenth part of the blog discussing about the role of automation in manufacturing and health industries. Let us explore the blog to find out in more details. In words of Alain Dehaze:

"Warp speed developments in technology-automation,artificial intelligence, and the arrival of the sharing economy-are transforming how we work.Beyond technology, traditional working patterns are also being disrupted by changes in society,organizations and workforce management,leading to the rise of a more independent and dispersed workforce".

Automation in Manufacturing


Lights out manufacturing is a production system with no human workers, to eliminate labor costs. Lights Out Manufacturing grew in popularity in the U.S. when General Motors in 1982 implemented humans “hands-off” manufacturing in order to “replace risk-averse bureaucracy with automation and robots”. However, the factory never reached full “lights out” status. The expansion of Lights Out Manufacturing requires:
  • Reliability of equipment
  • Long term mechanic capabilities
  • Planned preventative maintenance
  • Commitment from the staff

Automation in Health


The costs of automation to the environment are different depending on the technology, product or engine automated. There are automated engines that consume more energy resources from the Earth in comparison with previous engines and vice versa.[citation needed] Hazardous operations, such as oil refining, the manufacturing of industrial chemicals, and all forms of metal working, were always early contenders for automation. The automation of vehicles could prove to have a substantial impact on the environment, although the nature of this impact could be beneficial or harmful depending on several factors. Because automated vehicles are much less likely to get into accidents compared to human-driven vehicles, some precautions built into current models (such as anti-lock brakes or laminated glass) would not be required for self-driving versions. Removing these safety features would also significantly reduce the weight of the vehicle, thus increasing fuel economy and reducing emissions per mile. Self-driving vehicles are also more precise with regard to acceleration and breaking, and this could contribute to reduced emissions. Self-driving cars could also potentially utilize fuel-efficient features such as route mapping that is able to calculate and take the most efficient routes. Despite this potential to reduce emissions, some researchers theorize that an increase of production of self-driving cars could lead to a boom of vehicle ownership and use. This boom could potentially negate any environmental benefits of self-driving cars if a large enough number of people begin driving personal vehicles more frequently. Automation of homes and home appliances is also thought to impact the environment, but the benefits of these features are also questioned. A study of energy consumption of automated homes in Finland showed that smart homes could reduce energy consumption by monitoring levels of consumption in different areas of the home and adjusting consumption to reduce energy leaks (such as automatically reducing consumption during the nighttime when activity is low). This study, along with others, indicated that the smart home’s ability to monitor and adjust consumption levels would reduce unnecessary energy usage. However, new research suggests that smart homes might not be as efficient as non-automated homes. A more recent study has indicated that, while monitoring and adjusting consumption levels does decrease unnecessary energy use, this process requires monitoring systems that also consume a significant amount of energy. This study suggested that the energy required to run these systems is so much so that it negates any benefits of the systems themselves, resulting in little to no ecological benefit.

Convertibility and Turnaround Time


Another major shift in automation is the increased demand for flexibility and convertibility in manufacturing processes. Manufacturers are increasingly demanding the ability to easily switch from manufacturing Product A to manufacturing Product B without having to completely rebuild the production lines. Flexibility and distributed processes have led to the introduction of Automated Guided Vehicles with Natural Features Navigation. Digital electronics helped too. Former analogue-based instrumentation was replaced by digital equivalents which can be more accurate and flexible, and offer greater scope for more sophisticated configuration, parametrization and operation. This was accompanied by the fieldbus revolution which provided a networked (i.e. a single cable) means of communicating between control systems and field level instrumentation, eliminating hard-wiring. Discrete manufacturing plants adopted these technologies fast. The more conservative process industries with their longer plant life cycles have been slower to adopt and analogue-based measurement and control still dominates. The growing use of Industrial Ethernet on the factory floor is pushing these trends still further, enabling manufacturing plants to be integrated more tightly within the enterprise, via the internet if necessary. Global competition has also increased demand for Reconfigurable Manufacturing Systems.

No comments:

Post a Comment