Pages

  • Home
  • Blog Archive
  • Blog Submission
  • About Us
  • Contact Us

Thursday, 2 August 2018

Artificial Intelligence (Part-VI)- Amazing Tools Used in Artificial Intelligence

Image for representative purpose only.

Find Out Some Of the Amazing Tools Used For the Development of Artificial Intelligence


Now we continue with the sixth part of our blog on artificial intelligence. Those who have missed our fifth part can read it from Here. It will help to connect with this sixth part of the blog discussing some of the important tools and techniques used in the development of artificial intelligence. Let us explore the blog to find out in more details. In words of Larry Page:

"Artificial intelligence would be the ultimate version of Google. The ultimate search engine that would understand everything on the web. It would understand exactly what you wanted, and it would give you the right thing. We're nowhere near doing that now. However, we can get incrementally closer to that, and that is basically what we work on".

Tools of Artificial Intelligence


Some more tools used in the development of artificial intelligence with higher accuracy and better performance are-

ii) Mathematical Optimization or Search Optimization


Many problems in AI can be solved in theory by intelligently searching through many possible solutions: Reasoning can be reduced to performing a search. For example, logical proof can be viewed as searching for a path that leads from premises to conclusions, where each step is the application of an inference rule. Planning algorithms search through trees of goals and sub-goals, attempting to find a path to a target goal, a process called means-ends analysis. Robotics algorithms for moving limbs and grasping objects use local searches in configuration space. Many learning algorithms use search algorithms based on optimization. Simple exhaustive searches are rarely sufficient for most real-world problems: the search space (the number of places to search) quickly grows to astronomical numbers. The result is a search that is too slow or never completes. The solution, for many problems, is to use "heuristics" or "rules of thumb" that prioritize choices in favour of those that are more likely to reach a goal and to do so in a shorter number of steps. In some search methodologies heuristics can also serve to entirely eliminate some choices that are unlikely to lead to a goal (called "pruning the search tree"). Heuristics supply the program with a "best guess" for the path on which the solution lies. Heuristics limit the search for solutions into a smaller sample size. 
A very different kind of search came to prominence in the 1990s, based on the mathematical theory of optimization. For many problems, it is possible to begin the search with some form of a guess and then refine the guess incrementally until no more refinements can be made. These algorithms can be visualized as blind hill climbing: we begin the search at a random point on the landscape, and then, by jumps or steps, we keep moving our guess uphill, until we reach the top. Other optimization algorithms are simulated annealing, beam search and random optimization. Evolutionary computation uses a form of optimization search. For example, they may begin with a population of organisms (the guesses) and then allow them to mutate and recombine, selecting only the fittest to survive each generation (refining the guesses). Classic evolutionary algorithms include genetic algorithms, gene expression programming, and genetic programming. Alternatively, distributed search processes can coordinate via swarm intelligence algorithms. Two popular swarm algorithms used in search are particle swarm optimization and this is inspired by bird flocking and ant colony optimization which is inspired by ant trails.

iii) Decision Theory and Utility Theory


Expectation-maximization clustering of Old Faithful eruption data starts from a random guess but then successfully converges on an accurate clustering of the two physically distinct modes of eruption. Many problems in AI (in reasoning, planning, learning, perception, and robotics) require the agent to operate with incomplete or uncertain information. AI researchers have devised a number of powerful tools to solve these problems using methods from probability theory and economics. Bayesian networks are a very general tool that can be used for a large number of problems: reasoning (using the Bayesian inference algorithm),  learning (using the expectation-maximization algorithm), planning (using decision networks) and perception (using dynamic Bayesian networks). Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding explanations for streams of data, helping perception systems to analyse processes that occur over time. Compared with symbolic logic, formal Bayesian inference is computationally expensive. For inference to be tractable, most observations must be conditionally independent of one another. Complicated graphs with diamonds or other "loops" (undirected cycles) can require a sophisticated method such as Markov Chain Monte Carlo, which spreads an ensemble of random walkers throughout the Bayesian network and attempts to converge to an assessment of the conditional probabilities. Bayesian networks are used on XBox Live to rate and match players; wins and losses are "evidence" of how good a player is. A key concept from the science of economics is "utility": a measure of how valuable something is to an intelligent agent. Precise mathematical tools have been developed that analyse how an agent can make choices and plan, using decision theory, decision analysis, and information value theory. These tools include models such as Markov decision processes, dynamic decision networks, game theory and mechanism design.

No comments:

Post a Comment